

Introduction to owning a Facility

National Association of Wastewater Transporters, Inc.

Current Practices

a 25% of US Households use Onsites for infrastructrue
a 114.8 Million Households
[2010 census]
a 28.7 Million homes
a Assuming 1,000 gal tanks & 3 year service
9,855,000,000 gallons per year

Survey about Storage

R11 States responded **Q**1 to Unknown numbers of Facilities №10,000 gal to No maximum Gere Rees None to \$500
 ∞4 required training [7 didn't] 100 09 **NIN**

Thinking about Cost

Resources

OptionsFuture

RYour Costs

Do you know?Looking ahead

Dealing with Septage

Operation models

Complete discharge **G** Land application **R** Treatment **G** Thickening **Os** Dewatering **Other products** Reproduct handling **C** Effluent **Ref Effluent** Treatment **Solids**

SCREENING AND DIRECT DISCHARGE TO WWTP

TRANSFERRING TO WWTP

DEWATERING TREATMENT FACILITY

Thickening Dewatering Further treatment Class A Composting **NEW PRODUCT**

Final Resting

Final resting place

Ray Two productsSolidsRay Class BRay Class ASwaterSwaterRay BodRay FOG

Septage Treatment Levels

caClass A

Set treatment level
Methods & testing
Marketable product
No tracking of final resting

Class B

503 Regulations
Records & Reporting

Land Application

Beneficial Reuse thru the Soil & Beyond

Your Vision

(3

Who you are and where you are going

Visioning

Your MarketsYour RegulationsYour Resources

YOUR VISION: ROAD MAP

Business

Management
 Septage
 Biosolids {Sludge}
 Small community systems

Best Choice:

The Next Steps

Revealed ing Constraints (Revealed in the second se

Throw it on the wall & see what sticks

Total Costs

Restorm line YOUR Costs

PLANNING AND ENGINEERING

YOUR FACILITY PLAN
Interviewing your team
Your Company
Accountant
Engineering
Banking
Attorney
Marketing

Engineer

Rermitting CONFER Resign **B**Plans **R**Costs ^{CR}Operation Rearning vs. Knowing Realize Fighting vs. Following

Flexibility

Rechnology adds

BUILDING & OPERATION

A Your Choices A It will take time You will be the **EXPERT**

General Enginering

Gravity is You Friend

Safety

In your Company

Safety Plan
 Fire\ Medical
 Personal Protection
 Clothing
 Clothing
 Waste
 Perception

A place to take a peak

STORAGE

Flexibility

Realing with Issues **Weather** Breakdowns RPiping Read Loads ^{CS}Plan for receiving cspH

Sources of Odors

Inorganic
 Hydrogen Sulfide
 Ammonia
 Organic
 Protein breakdown

Odor Control

Ranks to: BAY PRODUCTS, INC.

Odor Control SUMMARY Compounds Treated

	Hydrogen Sulfide	Organic Odors	Ammonia
Carbon Adsorption	Х	X	
Wet Scrubber	X	X	Х
Biofiltration	X	X	X

An Example

ন্থ3,000 gallon truck মেLooking at: মেUsing the City মেUsing Land Application মেYour Own Facility

PUBLICLY OWNED TREATMENT WORKS (POTWs)

Read of Plant

PUBLICLY OWNED TREATMENT WORKS (POTWs)

Septage Receiving Area

PUBLICLY OWNED TREATMENT WORKS (POTWs)

Economic Elements

- Disposal Fee
 - Per Gallon
 - Per Load
 - Honor System
- Truck Time
 - Distance
 - Time
 - Driver cost
- 24/7 Facility
 - Need Storage [Holding Tank]

PUBLICLY OWNED TREATMENT WORKS (POTWs)

Economic Elements

- Disposal Fee
 - Per Load 5 cents/gal -3,000 gal \$150.00
- Truck Time
 - Time Additional 1 hour @80.00/hr \$ 80.00
- 24/7 Facility Yes
- Total Cost for 3,000 Gallons \$230.00
 - Per 1,000 gallons \$230/3= \$76.67
 - Per Gallon \$230/3,000 = \$0.07667

A 40 CFR Part 503 (USEPA)
Screening
Class B Biosolid
Pollutant Limits
Pathogen and Vector Attraction Reduction
PH 12 for 30 minutes or,
Inject or,
Incorporate within 6 hours

Economic Elements

- Land Cost
- Equipment
 - Screening
 - Tankage w/mixing
 - Lime Storage
 - Spreading Equipment
- Lime
- Trucking/Application
- Volume to be disposed
- Recordkeeping

- Economic Elements
 - Volume to be Disposed 5,200,000 gal/yr
 - Land Cost
 - Equipment

\$50,000 10 yr

None

- Screening
- Tankage w/mixing
- Lime Storage
- Spreading Equipment
- Lime 25# per 1,000 gal @\$150.00/ton
- Trucking 1 hr turnaround @\$80.00
- Recordkeeping

Disposal Costs Based on 20,000 Gallons Per Day				
PARAMETER	COST	PER	Cost Per Year	
EQUIPMENT	\$50,000	10 Years	\$ 5,000	
LIME	\$150 per Ton	25 # per 1,000 5,200 x 25 lbs = 130,000 lbs	\$ 9,750	
TRUCKING	\$80.00/hr	1 hr per 3,000 gal 5,200,000/3,000= 1,733 trips	\$ 138,600	
TOTAL COST			\$ 153,350	
COST PER 1,000			\$ 29.49	
COST PER GAL			2.949 Cents	

PRIVATELY OWNED DEDICATED FACILITY

REconomic Elements ^{CS}Planning/Engineering **B**Permitting **G**Funding Capital Reimbursement Fee **B**Equipment Selection **©**Operational Costs

DEDICATED FACILITY TECHNOLOGIES THINK! ... What are your Resources?

	Solids		Liq	uid		
Lime Stabilization	Land Apply					
Thickening	Land Apply		POTW	POTW	Land Apply	
Dewatering	Land Apply	Comp He Dry et	eat ring	Landfill	POTW	Land Apply

- Unit Processes
 - Screening/Grit Removal
 - Equalization Tankage
 - Dewatering
 - Polymer Addition
 - Sludge
 - Further Treatment
 - Filtrate
 - Further Treatment
 - Odor Control

Economics of Construction
Land & Building
Screen/Grit Removal
Dewatering Equipment
Tankage
Odor Control
Engineering & Permits
Plumbing & Electrical

\$400,000 50,000 100,000 50,000 25,000 30,000 <u>40,000</u> \$695,000

Disclaimer: Costs May Vary Considerably

Capital Reimbursement Fee
 Defined in Sewer Use Ordinance
 Usually _____ Dollars per _____ Gallons per Day (EDU-Equivalent Dwelling Unit)

Example: \$\$ 3,500 per EDU \$\$ 228 gallons per day (gpd) is an EDU \$\$ Say 20,000 gpd or 20,000/228 = 87.72 EDUs \$\$ 87.72 EDUs x \$\$ 3,500 per EDU = \$\$ 307,020

Note: Costs May Vary Considerably

← Economics of Annual Costs for 20,000 gpd

A Payback of Capital Costs	\$ 89,650
Sewer Discharge Fees @ \$.005	26,000
Sludge Disposal @\$35.00/ton	75,900
C3 Utilities	8,000
Chemicals (Polymer/Lime)	9,750
🖙 Permit & Analysis	3,000
🖙 Repair & Maintenance	5,000
🖙 Wages & Benefits	40,000
S Insurance	5,000
Cost of Property	<u>10,000</u>
5,200,000 Gal per year at 5.2 cents/gallon	\$ 272,300

SUMMARY

Disposal Costs Based on 20,000 Gallons Per Day			
POTW	7.667	cents/gal	
Land Application	2.284	cents/gal	
Dedicated Facility	5.24	cents/gal	

Economics of Construction
Screen/Grit Removal
Screen/Grit Removal
Dewatering Equipment
Tankage
Odor Control
Engineering & Permits
Plumbing & Electrical

\$400,000 10,000 --50,000 150,000 1-00,000 50,000 25,000 30,000 40,000 705,000\$695,000-

Disclaimer: Costs May Vary Considerably

Reconomics of Annual Costs for 20,000 gpd

90,550\$-89,650 **B** Payback of Capital Costs Sewer Discharge Fees @ \$.005 26,000 Sludge Disposal @\$35.00/ton 40,000 75,900-**Utilities** 8,000 Chemicals (Polymer/Lime) 8,000 --9,750 **G** Permit & Analysis 3,000 **G** Repair & Maintenance 5,000 **Wages & Benefits** 40,000 **G** Insurance 5,000 4.53 235,550 **Cost of Property** 10,000 5,200,000 Gal per year at 5.2 cents/gallon \$272,300

SUMMARY

Disposal Costs Based on 20,000 Gallons Per Day

POTW	7.667	cents/gal
Land Application	2.494	cents/gal
Dedicated Facility	4.53	cents/gal

MORE INFO?

Water Environment Federation Septage Handling Manual of Practice No. 24 1-703-684-2400 www.wef.org/applications/publications/

Trucks & Things

Vous de la constant d

Your Truck(s) {Equipment}

Match the Truck to the Job

Full Dump

-(%

Crustbuster

Recycling Trucks

Returning water to the Tank
Sensor operation
Juggler
Screening separation
Simon Moos
New Tech
SludgeNet

Juggler J10-A -- Juggling - 3 simple steps !!

Step 1 Supernatant is drawn up.

Juggler J10-A Juggling - 3 simple steps !!

Step 2 Sludge and scum are drawn up.

Juggler J10-A Juggling - 3 simple sterr

Step 3 Supernatant is treated and returned to tank.

Filter System

Separation

