Dealing with Restaurant High Strength Waste

2010 Pumper & Cleaner Environmental Expo

Education Day

Louisville KY – February 24, 2010

Bill Stuth Sr Aqua Test, Inc Black Diamond WA 98010 Aquatestinc.com

High strength waste is created within the facility

Where do you find HSW?

- Normally—
 - Food establishments
 - Bakeries
 - Supermarkets
 - Taverns
 - Mini marts
 - Camps and golf courses
 - Hospitals, clinics, etc
 - Anywhere food is prepared or chemicals are used
 - Some Residential

What causes HSW?

- Elevated
 - BOD5
 - •FOG
 - TSS

Typical Residential Waste Strength Values

Parameter

$\overline{\mathbf{a}}$. $\overline{\mathbf{BOD}}_{5}$

b. TSS

c. FOG

d. DO

e. pH

f. Temp

Range

110 - 250 mg/L

44 - 155 mg/L

10 - 20 mg/L

o - 1.0 mg/L

6.5 - 7.2

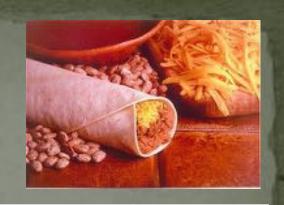
48 - 70° F

Typical

140 mg/L

75 mg/L

15 mg/L


o.5 mg/L

7.0

59° F

Table 7.2 Waste characteristics (average range of values) of restaurant wastewater

Parameter	Chinese Restaurant	Western Restaurant	American Fast Food	Student Canteen	Bistro
BOD ₅ (mg/L)	58 - 1430	489 - 1410	405 - 2240	545 - 1630	451 - 704
TSS (mg/L)	13.2 - 246	152 - 545	68 - 345	124 - 1320	359 - 567
FOG (mg/L)	120 - 172	52.6 - 2100	158 – 799	415 - 1970	140 - 410

O & M should include basic troubleshooting

Basic troubleshooting includes the use of--

- Your eyes
- Your nose
- Tools
- A checklist

Tools required for O & M

- Sludge measuring tool
- Sample rod
- Imhoff cone
- pH meter

- Voltage meter
- DO meter
- Thermometer
- Sample bottles & labels

•Thermometer

•Tool used to measure sludge levels

•Sample collection tool

•Imhoff cone

•Sample bottles

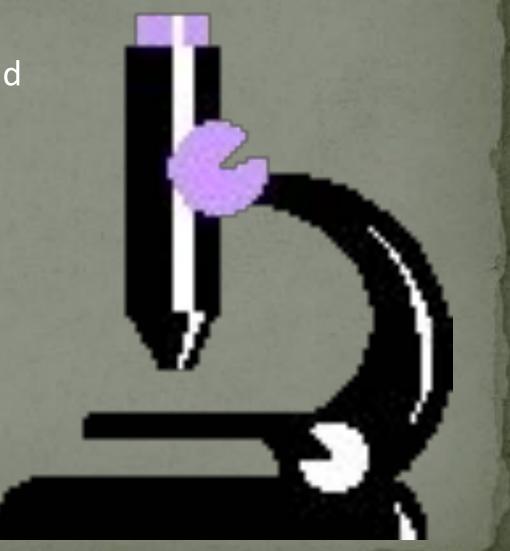
•Distilled water

•pH measuring device

•DO and Temp meter

•DO test kit—

1 to 12



•Pocket pH meters & buffer for calibration in the field

Volt meter

•DO test kit— 0 to 1 •Using a microscope is the easiest method of determining FM Ratio and the presence of living organisms

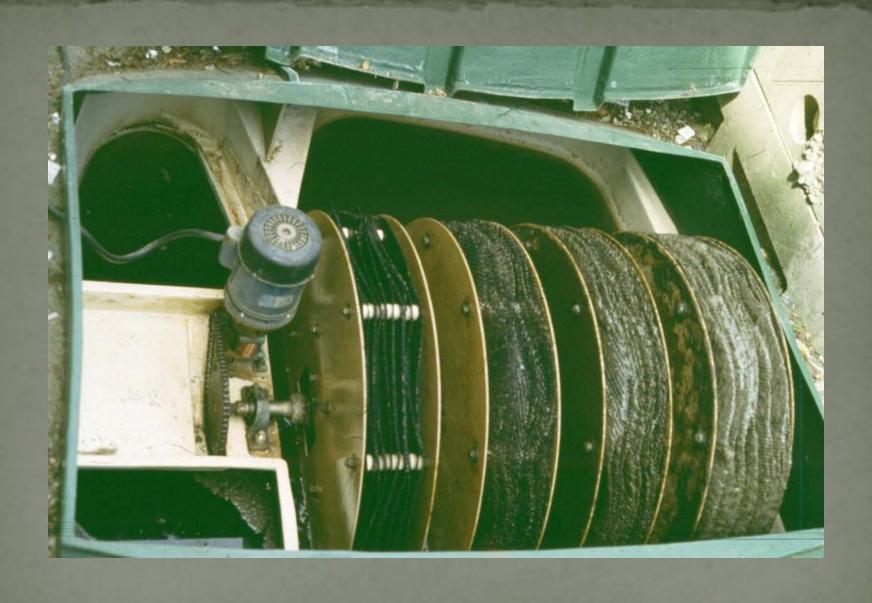
•Helps determine if lab testing is necessary

Residential unit receiving restaurant waste

•Foaming:

An oily sheen indicates high sudsing detergent (normally smells like detergent)

Particles in the foam indicate the system lacks food (normally has an unusual odor)



FOG

You know you are in trouble when you find something like this

Vegetable oils are floating around the edge—Animal fat is yellow in center

ATU working properly

ATU organically overloaded

Surface of trickling filter organically overloaded

Organically overloaded trickling filter beneath the surface

Tank needs pumping but drainfield is not damaged

Sludge Profile

Bottom to top Left to right

Ft 1

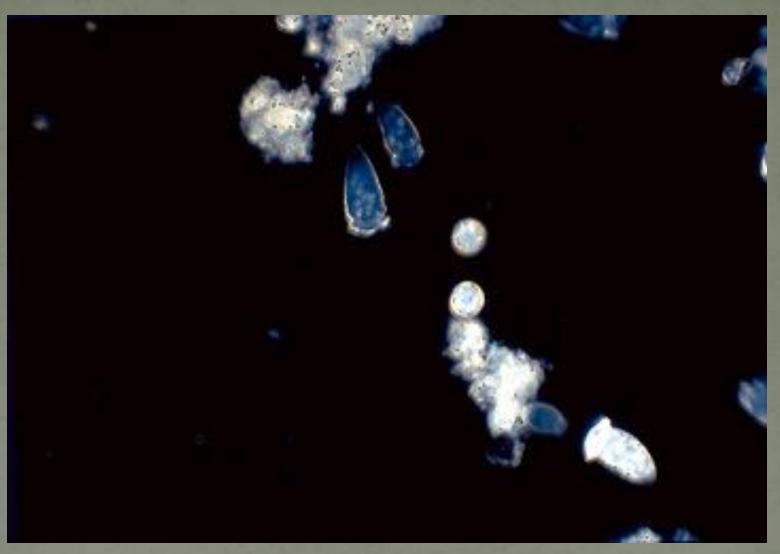
Ft 2

Ft 3

Ft 4

Sludge profile of second compartment

- Wrong color sludge
- No clear zone


• Using a DO meter and a microscope in the field

F M Ratio

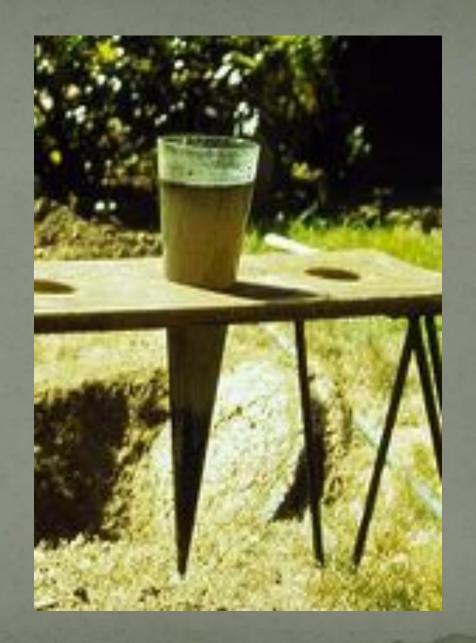
•Food to microorganism

While not normally considered, FM Ratio is important in the functioning of onsite systems

F M Ratio: Low food supply DO .5

F M Ratio: High food supply DO 2.0

Septic tank
effluent
going to an
ATU.
(meets state
guidelines)


ATU effluent meets discharge standards of both the manufacturer and the state guidelines.

BOD₅ of 120 mg/L and 10 mg/L

Heavy flocculent –
Sample collected
from clear zone

BOD₅ over 600 mg/L

Sample collected from tank shows the TSS is under 40 mg/L

Elementary School-notice the difference in TSS

Girls bathroom

Boys bathroom

Outlet of a grease trap--

Sample collected on a Thursday, temperature is appx 85°

Outlet of a grease trap--

Sample collected on a Saturday afternoon, temperature appx 102°

Outlet of a grease trap—

Temperature has dropped to appx 95°

Now you go inside--

Utensils

Disposable or Washable

Cooking Oils – have they changed what they use?

Are Dishes Hand Washed?

- Draining and refilling frequency can produce large wastewater surges
- Lower temperatures require chemicals

Dishwasher?

- Temperature can effect the state of the FOG
- Chemicals can also emulsify FOG
- Dishes should be scraped of extra food before washing

Garbage Disposal

- Does the facility have one?
- Increases undigested food

Drains

Drain cleanerswill elevate BOD5

Scraping plateswill reduce BOD5

Dish Washer Prep Area

Area is so small it does not allow adequate space for storing dirty dishes

Not scraping dishes creates HSW

Dish Washer Prep Area

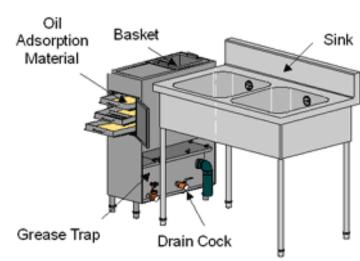
Area is small but they do scrape the dishes

Hot water rinse— 180°

Low temperature (140°) chemical rinse

After Hours Cleanup – have they changed their routine?

- Chemicals Used
- Does wash-water go down the floor drain?



Grease Traps

Is the a grease trap in the kitchen?

Must be cleaned out on a regular basis.

Thank You